
Practical Considerations in
The Calculation of Kelvin Functions

Ber(x), Bei(x), Ber'(x) and Bei'(x)
And Complete Elliptic Integrals K and E

Robert S. Weaver
October 26, 2009

Part I - Kelvin Functions
To implement the Kelvin functions in Basic, an excellent starting reference is 
H. B. Dwight's Tables of Integrals and Other Mathematical Data (4th Edition, 
MacMillan, 1961). He gives series formulae for these functions as follows:

 (820.3)

 (820.4)

 (820.5)

 (820.6)

(For this discussion the terms in these series will be numbered starting at zero.)

The pattern in the terms is readily  apparent. The exponent in the numerator increases 
by  4  for each successive term. The patterns in  the denominators are slightly  different for 
each function, but again,  are readily  apparent. One can implement a loop in Basic to 
calculate each term  and then sum them, skipping out of the loop when the terms become 
vanishingly  small. However, one must be careful in  the way  that  the terms are 
calculated.  There is a natural tendency  to want to evaluate the numerator  fully, then the 
denominator, and then divide the former by  the latter. Unfortunately, for  values of x>1, 
the value of the terms of the numerator  get very  large very  quickly  and can cause 
overflows. Likewise, the squared factorials in the denominator will get very  large even 
faster than the numerator. So, even though the value of the term  itself may  be small,  the 
numerator and denominator calculations may fail due to overflow.
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A better  method is to calculate them incrementally. For  example, term 2 of Ber(x), 
expanded is:

We can evaluate it like this: 

or like this:

Using the first method,  the numerator and denominator  get unwieldy  very  quickly. 
Using the second method, the values of the individual fractions remain relatively 
manageable.

This also presents an opportunity  to make the calculation computationally  more 
efficient by  developing a recurrence relation for  the terms. That is,  we can define term n 
as a function of term n-1.

Expanding the first three terms of Ber(x), simplifying the fractions, and ignoring the 
sign for the time being, we get:

It is apparent that term 2 can be calculated by starting with term 1 and multiplying it by:

And in general, each new term n can be calculated by  starting with the previous term 
and multiplying it by a factor which we will call termi, which will be:

In this way, we don't have to calculate each new term in  its entirety, only  the 
incremental part  consisting of the four sub-factors shown. The savings in computation 
become significant when the number of terms to be calculated becomes large.
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The general algorithm then, for calculating Ber(x) will be as follows:
1. Explicitly calculate term0 as the starting term.
2. Set  an initial value for  the sign (+1  or -1), which will alternate for  each term 

calculated.
3. Set the initial sum of the series equal to term0×sign.
4. Using a For-Next loop, perform the remaining calculations:
5. Set sign=-sign
6. Calculate incremental termi and multiply  the previous value of term by  this value to 

get the new term.
7. Set sum=sum+sign×term
8. Exit the loop when the term becomes vanishingly small.
This algorithm is implemented in Open Office Basic as follows:

Function Ber(ByVal x as double) as double
  ' Calculates Ber(x) function
  ' Uses recurrence relation based on H.B. Dwight's 
  ' series expansion formula 820.3
  ' Basic code by Robert Weaver 2009-10-26
  Dim i,sign As integer
  Dim sum,termi,term As Double
  if x=0 then
    Ber()= 1
  else
    term=1
    sign=1
    sum=term*sign
    '300 iterations is enough to calculate any
    'value within the range of double precision
    for i = 1 to 300
      sign=-sign
      termi=((x/(4*i)) * (x/(4*i-2)))^2
      term=term*termi
      sum=sum+sign*term
      'Skip out of loop if current term < 1e-12 of sum
      if abs(term/sum)<1e-12 then exit for
    next
    Ber()= sum
  end if
end Function

The only  item that needs further comment is the first IF statement which  checks for  the 
case of x=0. In this situation the function simply  returns the correct value of 1  rather 
than executing the For-Next  loop. This is not strictly  necessary  for  the Ber(x) function, 
but  for  the remaining three functions it prevents a divide by  zero error  in  the 
convergence test at the end of the loop.

By  pasting this code into the Open Office Macro Editor, the function may  then be used 
in a spreadsheet formula in the same way as a built-in function.
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The remaining functions are calculated in exactly  the same way. The only  lines of code 
which are different are for the initial value of term,  the sign value,  the formula for the 
recurrence relation, termi,  and the value returned for the case of x=0. The code for 
Bei(x), Ber'(x) and Bei'(x) follows:

Function Ber_(ByVal x as double) as double
  ' Calculates Ber'(x) function -- d/dx Ber(x)
  ' Uses recurrence relation based on H.B. Dwight's
  ' series expansion formula 820.5
  ' Basic code by Robert Weaver 2009-10-26
  Dim i,sign As integer
  Dim sum,termi,term As Double
  if x=0 then
    Ber_()= 0
  else
    term=(x/2)^3/2
    sign=-1
    sum=term*sign
    '300 iterations is enough to calculate any
    'value within the range of double precision
    for i = 1 to 300
      sign=-sign
      termi=(x/(4*i)) * (x/(4*i+2))^2 * (x/(4*i+4))
      term=term*termi
      sum=sum+sign*term
      'Skip out of loop if current term < 1e-12 of sum
      if abs(term/sum)<1e-12 then exit for
    next
    Ber_()= sum
  end if
end Function
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Function Bei(ByVal x as double) as double
  Dim i,sign As integer
  Dim sum,termi,term As Double
  ' Calculates Bei(x) function
  ' Uses recurrence relation based on H.B. Dwight's
  ' series expansion formula 820.4
  ' Basic code by Robert Weaver 2009-10-26
  if x=0 then
    Bei()= 0
  else
    term=x*x/4
    sign=1
    sum=term*sign
    '300 iterations is enough to calculate any
    'value within the range of double precision
    for i = 1 to 300
      sign=-sign
      termi=((x/(4*i)) * (x/(4*i+2)))^2
      term=term*termi
      sum=sum+sign*term
      'Skip out of loop if current term < 1e-12 of sum
      if abs(term/sum)<1e-12 then exit for
    next
     Bei()= sum
  end if
end Function

Function Bei_(ByVal x as double) as double
  Dim i,sign As integer
  Dim sum,termi,term As Double
  ' Calculates Bei'(x) function -- d/dx Bei(x)
  ' Uses recurrence relation based on H.B. Dwight's
  ' series expansion formula 820.6
  ' Basic code by Robert Weaver 2009-10-26
  if x=0 then
    Bei_()= 0
  else
    term=x/2
    sign=1
    sum=term*sign
    '300 iterations is enough to calculate any
    'value within the range of double precision
    for i = 1 to 300
      sign=-sign
      termi=(x/(4*i-2)) * (x/(4*i))^2 * (x/(4*i+2))
      term=term*termi
      sum=sum+sign*term
      'Skip out of loop if current term < 1e-12 of sum e
      if abs(term/sum)<1e-12 then exit for
    next
     Bei_()= sum
  end if
end Function
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Part II - Complete Elliptic Integrals of the First and Second Kind
Again, we refer  to H. B.  Dwight's Tables  of Integrals and Other Mathematical Data. He 
gives series formulae for these functions as will be shown in the following sections.

It  should be pointed out that depending on where these functions are encountered, 
and how they  are implemented, the input argument may  be in  one of three different 
forms: k, k2, or θ,  where θ=sin-1k.  The input argument  for  the formulae presented here 
will be k, which is known as the modulus of the integral.

1. Complete Elliptic Integral of the First Kind
Dwight gives a series formula for this function as:

 (773.2)

where

This formula  converges quickly  for  k<0.91,  but more slowly  for higher  input values. 
Dwight gives a second formula  which complements the first  one, as it converges quickly 
for large k, and more slowly for small k:

  (773.3)

The approach will be to use both  formulae,  selecting the one appropriate for  the input 
argument.

Again we will  number the terms starting at zero. The pattern is again readily  apparent. 
Dealing with (773.2) first, it can be seen that term n is equal to term n-1 multiplied by:

All that  remains to be done, is explicitly  calculate the starting parameters, iterate the 
terms and then multiply the final sum by π(1+m)/2.
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Formula (773.3) consists of a  series of terms, each of which  is comprised of a series of 
sub-terms. The coefficients outside of the brackets can be calculated from the preceding 
coefficients; coefficient n is equal to coefficient n-1 multiplied by:

Inside the brackets, subterm n is equal to subterm n-1 minus:

One final point worth  noting is that n never appears without a  coefficient  of 2 in front of 
it  in either  formula. Therefore, we can optimize things a  bit  further by  starting the loop 
counter  at two, and incrementing by  two, then do away  with the coefficient. The 
function converges in fewer than 13 iterations.
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The Open Office Basic code for the complete elliptic integral of the first kind follows:

Function EllipticK (ByVal k As Double) As Double
  ' Calculate the complete elliptic integral of the
  ' first kind with modulus k
  ' Uses series expansion
  ' Based on Dwight's formulas 773.2 & 773.3
  ' Basic code by Robert Weaver, 2009-10-26
  dim n As Integer
  dim sum,term,termi,kp,kp2,m,m2,coeff As Double
  kp2=1-k*k
  kp=sqr(kp2)  'complementary modulus
  if k<=.91 then
    ' if k <= .91 use formula 773.2
    m=(1-kp)/(1+kp)
    m2=m*m
    term=1.0 'the zeroth term is 1.0
    sum=term
    for n=2 to 100 step 2
      'calc nth coefficient
      termi=((n-1)/(n))^2*m2
      term=term*termi
      sum=sum+term
      if (term/sum)<1e-12 then exit for
    next
    EllipticK() = pi()*sum/2*(m+1)
  else
    ' if k > .91 use formula 773.3
    term=log(4/kp)
    coeff=1.0
    sum=term
    for n=2 to 100 step 2
      coeff=coeff*((n-1)/n)^2*kp2
      termi=2/((n-1)*n)
      term=term-termi
      sum=sum+coeff*term
      if (coeff*term/sum)<1e-12 then exit for
    next
    EllipticK() = sum
  end if
End Function
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2. Complete Elliptic Integral of the Second Kind
Dwight gives a series formula for this function as:

 (774.2)

where

This formula converges quickly  for k<0.92, but more slowly  for higher  input values. 
Dwight gives a second formula  which complements the first  one, as it converges quickly 
for large k, and more slowly for small k:

  (774.3)

The approach, as before, will be to use both  formulae, selecting the one appropriate for 
the input argument.

For formula (774.2), it can be seen that term n is equal to term n-1 multiplied by:

As a point of interest, for  the case n=1, the part inside the brackets is negative, but 
squaring the result yields the proper positive value.

Next, we examine formula (774.3). It's interesting to compare it  to formula (773.3). 
They  are very  similar, but have a few subtle differences which introduce complications 
to their implementation. In the coefficient outside of the brackets, the rightmost factors 
in  the numerator and denominator are not  squared, and the last term  inside the 
brackets has a numerator of one rather than two.

The coefficients outside of the brackets can be calculated from  the preceding 
coefficients; coefficient n is equal to coefficient n-1 multiplied by:
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Note that this fails in the case n=1  due to a  zero denominator. There are a couple of ways 
to resolve the problem. We can explicitly  calculate both coefficients 0 and 1, as well as 
terms 0 and 1, and then begin the loop at n=2. Alternatively,  we can  save the 
incremental part of the coefficient from  one iteration, to be used in the following 
iteration, giving it an initial value of one. This second approach will be used as it will 
result in fewer mathematical operations. In this case we define ci as the incremental part 
of the coefficient:

for n>0

and then

Next, we look at what's inside the brackets. Inside, term n is equal to term n-1 minus:

We see that this also fails for  the case n=1 due to a  zero denominator. It will be resolved 
in the same way as before. The incremental part of the term is defined as ti:

for n>0

and then

As before, the variable n never appears without a coefficient of 2  in front of it.  Therefore 
we initialize the loop at  two, and increment by  two, and remove the coefficient.  The 
function converges in fewer than 13 iterations.
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The Open Office Basic code for the complete elliptic integral of the second kind follows:

Function EllipticE (ByVal k As Double) As Double
  ' Calculate the complete elliptic integral of the
  ' second kind with modulus k
  ' Uses series expansion
  ' Based on H. B. Dwight's formulae 774.2 & 774.3
  ' Basic code by Robert Weaver, 2009-10-26
  dim n As Integer
  dim sum,term,termi,kp,kp2,m,m2,coeff,cio,cin,tio,tin As Double
  kp2=1-k*k
  kp=sqr(kp2) 'complementary modulus
  m=(1-kp)/(1+kp)
  if k=1 then 
    'This prevents a divide by zero problem
    EllipticE() = 1
  elseif k<.93 then 
    'formula 774.2
    term=1.0 'the zeroth term is 1.0
    sum=term
    coeff=1.0 'the zeroth coefficient is 1
    for n=2 to 100 step 2
      termi=m*(n-3)/n
      term=term*termi*termi
      sum=sum+term
      if (term/sum)<1e-12 then exit for
    next
    EllipticE() = pi()*sum/(2*m+2)
  else
    'formula 774.3
    tio=0
    cio=1
    coeff=1
    term=log(4/kp)
    sum=1
    for n=2 to 100 step 2
      cin=(n-1)/n
      coeff=coeff*cio*cin*kp2
      cio=cin
      tin=1/((n-1)*n)
      term=term-tio-tin
      tio=tin
      sum=sum+term*coeff
      if (term*coeff/sum)<1e-12 then exit for
    next
    EllipticE() = sum
  end if
End Function
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