
ExpressionEvaluator Class for Xojo

Version 1.3.1 beta1

Robert S. Weaver
Saskatoon, Canada

1 Fine Print
The ExpressionEvaluator class source code is open source. You are free to copy it and
use it for any purpose (within Xojo's own licensing restrictions, of course). In doing so,
you assume all responsibilities for its use, and shall not hold the original author liable
for any damages, direct or indirect, caused by its use.

2 Description
ExpressionEvaluator is a Xojo class that allows the developer to work with
mathematical expressions entered (as text) by the user. The expression syntax is similar
to, but not necessarily exactly the same as that of a Xojo mathematical assignment
statement. The differences are discussed in Section 7.

I have developed its features to suit my own particular projects. At the same time, I've
tried to make things as general as possible, since there's no telling what features I or
others may need in future projects. Inevitably, the ExpressionEvaluator class will not
fully address the needs of every developer. But hopefully, it will give a good foundation
that can be suitably adapted without too much effort.

The ExpressionEvaluator class includes two principal methods: Parse and Eval.
Parse accepts a mathematical expression as a string argument, performs a syntax check,
and if no errors are encountered, parses it into:
- a command list array which is later used for efficient evaluation of the expression by

the Eval method, using stack operations;
- a symbol table of the variables used in the expression;
- a reformatted version of the input expression with uniform spacing and

capitalization;
- a postfix version of the input expression;
- other miscellaneous things.
Eval uses the symbol table information and command list, created by Parse, to evaluate
the expression. All operations are carried out using double precision floating point
numbers, and the result is returned as type double.

 For revision history, please refer to the last pages of this document.1

– ! –1

This two stage process makes the evaluation of the expression much more efficient,
because evaluation is far less processing intensive than parsing. This is important for
situations where the expression must be evaluated many times for different input
values, as would be the case in graphing or optimizer/solver applications. Of course,
there is nothing to prevent the developer from running Parse and Eval together,
shielding the end user from the internal goings on.
For further details about these, and other methods and properties, refer to the following
sections.

This class was developed using Xojo 2016r3, and later tested with 2016r4.1 and 2017r1.
A bug was introduced into release 2016r4.1 (see Feedback Case #46553) where the Auto
datatype would incorrectly return boolean and integer values as strings. Two new
functions AutoToInt() and AutoToBool() were added to the class as a workaround. The
bug still exists in the latest release of Xojo, but as far as I'm aware, the workaround
continues to work, and so this class should work with the latest Xojo releases. However,
since none of the releases after 2016r3 add new features of any benefit to this class, I will
continue to develop it in 2016r3 until further notice, and won't necessarily test it with
each new Xojo release. If you encounter any incompatibilities with newer Xojo releases,
please contact me at the email address given in Section 7.5.

3 Speed
First of all, it should be pointed out that everything that is provided in this class can
also be accomplished using Xojoscript, which will do it faster. However, Xojoscript also
has limitations. It is sandboxed with limited access to application resources. The
ExpressionEvaluator class, while slower has complete access to all application
resources. Admittedly, the choice not to use Xojoscript was made because it seemed like
a better programming exercise to use traditional expression parsing techniques.
Nevertheless, every effort has been made in this class, to evaluate expressions as
efficiently as possible, while at the same time making it fairly easy to extend the class
with new features as needs arise.

4 Quick Start Tutorial
The ExpressionEvaluator class is distributed as part of an example Xojo project file,
ExpressionEvaluator.xojo_binary_project. The project file includes two examples. If
you wish to try these before going any further, then skip ahead to Section 5. Otherwise,
the tutorial in this section will give you all of the basics for using this class. You can
work with the project file, or copy the ExpressionEvaluator class from the project file to
your own project file.

For each expression to be evaluated, create an instance of the ExpressionEvaluator
class:
Dim myExpEval As new ExpressionEvaluator

In this example, let's assume the expression we wish to evaluate is: 2*x + 7*y
Parse the expression:

– ! –2

Dim success As boolean = myExpEval.Parse("2*x + 7*y")

Parse returns True if the expression is successfully parsed, and False otherwise. The
Parse method logs the results of its operations as it parses the expression. If Parse
returns False, you can check the log to help diagnose the error.
Dim myErrorLog As string = myExpEval.GetLog

If Parse is successful, the variables in the expression are added to the symbol table. The
symbol table is in the form of two shared property arrays. The first, VarNames, is an
array of the variable names. The second, VarValues, is an array of the values of the
variables. When a variable is first created, it is assigned the value 0.0.

For the above example, the arrays would contain the following elements:

The variable $result is a default variable automatically created to hold the result of the
expression evaluation.

You can also explicitly give a destination variable in typical assignment statement
syntax:
Dim success As boolean = myExpEval.Parse("z = 2*x + 7*y")

This would result in the following variables.

Note that variable $result is always created regardless of whether or not a destination
variable has been specified. It will always occupy element 0 of the array. The positions
of the other elements are typically the same as the order in which they are created, but
this should never be relied upon.
Because the symbol table arrays are shared properties, the variables created by one
ExpressionEvaluator instance are accessible to all other instances. Hence, the output
variable from one expression can be used as an input variable in another expression
with no additional programming.

Element No. varNames varValues

0 $result 0.0

1 x 0.0

2 y 0.0

Element No. varNames varValues

0 $result 0.0

1 z 0.0

2 x 0.0

3 y 0.0

– ! –3

Before evaluating the expression, some values must be assigned to the variables. The
variables are assigned using the SetVariable method, as follows:

myExpEval.SetVariable("x",5.0)
myExpEval.SetVariable("y",9.0)

This assigns the value 5.0 to variable x, and 9.0 to variable y.

Now, to evaluate the expression. simply call the Eval method:

myExpEval.Eval

This evaluates the expression and stores the result (73.0, in this case) in either $result or
the specified destination variable z (as in the second example expression). To get the
result of the evaluation, you can use the Result method:

Dim myResult As double = myExpEval.Result

This always returns the result of the last evaluation of the ExpressionEvaluator
instance, regardless of whether it was assigned to $result or to another specified
variable.

Combining everything discussed up to this point, our program might look like this:

Dim myExpEval As new ExpressionEvaluator
If myExpEval.Parse("z = 2*x + 7*y") then
 myExpEval.SetVariable("x",5.0)
 myExpEval.SetVariable("y",9.0)
 myExpEval.Eval
 myTextField.text = "The result is: "+str(myExpEval.Result)
Else
 myTextField.text = myExpEval.GetLog
End If

Suppose we now create two more instances of ExpressionEvaluator with the
expressions:

y = 3*z - 5*w
w = x/y

– ! –4

The result of parsing these two expressions yields the following symbol table array
contents:

Since x, y and z already exist, only the new variable w is added to the arrays. The value
of w defaults to 0.0. The values of variables x, y and z are what they would be after
using the SetVariable method for x and y, as previously described, and then evaluating
the expression: z = 2*x + 7*y
The value of $result hasn't changed, because it has not been assigned as the destination.
This is an important distinction between how the method Result works and how the
variable $result is used. Method Result will always return the result of the last
evaluation of the instance regardless of which, if any, destination variable is assigned.
Variable $result will only be assigned the result of the evaluation if no other destination
variable has been specified.

There is an alternative method for creating new variables. You can use the SetVariable
method which was previously used to assign values to existing variables. If the variable
doesn't already exist, then SetVariable creates it and assigns its value.
SetVariable(name As String, value as Double)

SetVariable can be called before any instances exist, using the syntax:
ExpressionEvaluator.SetVariable("myPiVar",3.14159)

If a variable with the specified name already exists, it is simply set to the new value.

In order to retrieve the value of any variable, use the GetVariable method.
GetVariable(name As String) As Double

This covers the majority of what you need to know in order to use the
ExpressionEvaluator class. There are a few additional methods and properties which
allow for more efficient manipulation of data. They are described in detail in the
reference section.

Element No. varNames varValues

0 $result 0.0

1 z 73.0

2 x 5.0

3 y 9.0

4 w 0.0

– ! –5

5 Examples
The project file, in which the ExpressionEvaluator class is distributed, includes two
examples: A single expression evaluation, and a multiple expression evaluation.  
When you run the application, you are presented with this window:  

!
 
We will start with a single expression example. Copy the following expression:
z=2*a+7*b+13*c^2

Then, paste it into the Enter Expression text area in the application window.  
In the Single Expression control group there is a pair of buttons. Click the Parse button.
The result should look like this:  

!

– ! –6

The Parse/Evaluate Log, at the bottom of the window, contains status information that
the Parse method generated as it parsed the expression. However, all that we care about
is the first line that says "Parse Successful."
In the Variables listbox, all of the variables from the expression are displayed along
with their default values of 0.
Now, enter values in the list box for variables a, b, and c: 13, 12 and 11 respectively.  

!

Then, click the Evaluate button in the Single Expression control group.
The expression is evaluated, and the result, 1683 is assigned to destination variable z. 

!

– ! –7

If you look at the code for the Single Expression Parse and Evaluate buttons, you'll see
that it is very straightforward, and uses the methods described in the previous section.

Next, we will look at a multiple expression example.
Let's consider a system of 3 linear equations in 3 unknowns that we wish to solve:
2*x + 3*y - z = 14
5*x - 4*y + 2*z = 13
x + y + z = 23

A well known method for solving them is the Gauss-Seidel method. It requires that we
rearrange the equations so that one of the unknown variables appears by itself on one
side of the equals sign. For the first equation, we can move all but the x term to the
right.
2*x = 14 - 3*y +z

Now, dividing both sides by x's coefficient 2 we get
x = (14 - 3*y + z)/2

We do the same for the second equation, except that this time we separate out the
variable y.
y = (13 - 5*x - 2*z)/-4

And separating out variable z in the third equation.
z = 23 - x - y

In the Gauss-Seidel method, we simply start with an estimate (or wild guess) for values
of the variables. Then, substitute them into the above formula, evaluate each formula,
and replace the previous estimate of the variables with the new ones.
For example, let's say we start with an initial estimate of 0.0, 0.0 and 0.0 for x, y and z.
Applying these values to the first equation, and evaluating it, we get a new value for x
of 7.0. Next we apply the values 7.0, 0.0 and 0.0 to the second equation, and evaluate it.
This gives a new value for y of -11.0. Applying the values 7.0, -11.0 and 0.0 to the third
equation, and evaluating it, we get a new value for z of 27.0. If we continue to evaluate
each expression in sequence, using the latest calculated values for x, y and z, the
numbers should converge to the correct values of the variables. Unfortunately, this
doesn't always work. Sometimes the values diverge. To explain why this happens, and
how to fix it involves matrix algebra theory, and is beyond the scope of this example.
Suffice to say that if we set the new value of the variable to the mean of the old value
and the newly calculated value, the values are more likely to converge . So, for the first 2

calculation where we get a new value of 7.0 for x, we will take the average of the new
value 7.0 and the old value 0.0 to get 3.5. In the example project, the Gauss Seidel
evaluator method handles this automatically. So, the equations may be entered as
shown below.
x = (14 - 3*y + z)/2
y = (13 - 5*x - 2*z)/-4
z = 23 - x - y

 The likelihood of convergence improves, but there are still systems of equations which will fail to 2

converge. So, this simple example should not be used as the basis of a rigorous equation solving
application.

– ! –8

Now, copy the above set of equations, and paste them into the Enter Expression text
area. It should look like this:

!

In the Multiple Expressions control group, click the Parse button.

!

– ! –9

Now, in the Multiple Expressions control group, click the Evaluate button.

!

After the first evaluation, the variables x, y and z have the values shown in the listbox in
the above screenshot. If you continue to click the Evaluate button, the values start to
converge to their exact values. After ten iterations:

!

– ! –10

Naturally, for a practical application we would use a loop to iterate the evaluations, and
use a test to compare previous to current values in order to exit the loop when the
change in values drops below a certain threshold. That is what the Solve button does.
Clicking the Solve button gives the following result.

!

The numbers shown above are the exact solution to the set of equations.

These examples should give a good idea of some of the things that are possible with the
ExpressionEvaluator class. Have a look at the code in the button action event handlers
for implementation details.  

– ! –11

6 Reference

The methods and properties of the ExpressionEvaluator class are briefly explained
below. In the first version of this documentation, I included, for completeness sake,
every property and method in the class. I realize that this was a bit of overkill. In recent
versions, methods or properties that have been added to the class for internal use only
may not be included in the documentation. For information about methods not
included here, please refer to the source code. All methods are well commented in the
source listing.

6.1 Methods

Parse(exprString As String) As Boolean

The Parse method is the workhorse function of this class. It syntax-checks, and then
parses the exprString argument into the command list array cmdList. It adds any
included variables and constants to the symbol table arrays. As it proceeds with
parsing, it adds status and diagnostic information to the errLog string, which may be
retrieved with the getLog method. In addition, Parse creates a reformatted version of
the input expression and stores it in infixTxt, and creates a postfix version of the input
expression and stores it in postfixTxt. Parse also sets the values of several other
properties. These are discussed in the applicable property descriptions.

Parse operates as follows:
1. Call the Init method which sets up the operator data needed for parsing. If Init has

previously been called, then the data structures are already in place and it
immediately returns.

2. Scan the expression to ensure that it contains no illegal characters, and that any
parentheses are properly nested and balanced.

3. Scan the expression for numerical constants formatted in scientific notation, and if
found, convert any plus and minus signs in the exponent to escape characters.

4. Scan for operator symbols and replace them with tokens. As a result of this
replacement, the expression string is fully delimited with spaces between all tokens
and un-tokenized symbols. The expression string is now converted into a string
array using the spaces as delimiters for splitting the string.

5. Scan the remaining un-tokenized expression symbols, which should be either
variable names or numeric constants. These are replaced with variable and numeric
tokens, and these variables and constants are added to the symbol table arrays. At
this point, the expression is fully tokenized. The tokens are strings of four characters
each. The first character designates the type, and will be @ for operators, # for
numeric constants, and $ for variables. The remaining three characters of the token
are a three digit sequence number indicating the specific operator, constant or
variable.

– ! –12

6. Scan the tokenized expression to detect situations where the minus symbol "–"
should be treated as a unary minus, instead of the subtraction operator. The unary
minus operation is distinct from subtraction, because it takes only one operand,
while subtraction takes two. Unary minus has a different token assigned. Also, once
recognized as a unary minus, the symbol is changed internally from "–" to
"~" (tilde).

7. As a result of the previous operations, some of the elements in the expression array,
may now be empty. The array is compressed, eliminating the null elements.

8. Check to see if the expression contains the assignment operator = and a destination
variable. If so, it strips these out of the expression and sets the appropriate
destination variable parameters.

9. Call the Validate method to test whether the expression, as it now stands, is well
formed.

10. The expression array is now used to generate and store an equivalent postfix version
of the expression array.

11. The postfix expression array is used to generate the operator command list cmdList.
The evaluation stack evalStack is re-dimensioned to the necessary size to handle the
forthcoming expression evaluation.

12. If any fatal error has occurred in any of the above steps, the Parse method will have
exited, returning the value False. If the parser has successfully reached this point, it
now exits, returning True.

DeTokenize(s() As String) As String

This is a helper method used by Parse to convert an array of tokens into an equivalent
string of symbols.

DetokenSubExpr(s() s() as string,a as integer, b as integer) As String

This is a helper method used by Validate to convert a subset of the array of tokens s,
ranging from index a to index b, into an equivalent string of symbols.

Eval

Evaluates the expression which has previously been parsed by the Parse method. It
does this by calling, in sequence, all of the operator methods (the X_methods) contained
in the cmdList array. The result of the evaluation is stored in the expression's
destination variable if one has been assigned. Otherwise the result is stored in the
default $result variable.

FreeMem

Frees up memory by clearing all of the parsing data arrays used in the parsing process.
This may be called when no further parsing of expressions is required. Eval does not
use any of these data arrays. And so, previously parsed expressions can still be
evaluated. If subsequent expressions need to be parsed, the data arrays will
automatically be rebuilt. Hence, there is no harm in calling FreeMem. However, the

– ! –13

rebuilding of the parsing data arrays does take time. So, it's not advisable to call
FreeMem between each expression parsing.

GetLog As String

Returns the current diagnostic/status log data string.

Init As boolean

Compiles a dataset of the X_methods, their names and attributes. These data are used
by the parser to determine operator names, operator precedence, whether the operator
is unary or binary, etc. Init is called automatically by the Parse method as necessary. Init
should always return True. If it returns False, it indicates that one or more X_Methods
have bad or missing attributes.

OutputValue As Double

Returns the value of the expression's destination variable. This may not be the same as
the result of the last evaluation of the expression, because some other code may have
altered the variable's value after the expression's evaluation. See also the Result
method.

PrecedenceInp(token As String) As Integer

Returns the Input Precedence of the operator specified by token.

As the expression is converted from infix to postfix, the operators are pushed onto and
popped off of the parse stack, according to the operator's precedence relative to the
precedence of the other operators in the expression. PrecedenceInp is used for the
operator prior to being pushed onto the stack. After the operator is on the stack,
PrecedenceStk is used. These two different precedence values account for correct
handling of parentheses and left and right associative operators.

PrecedenceStk(token As String) As Integer

Returns the Stack Precedence of operator specified by token. See the description above
for the PrecedenceInp property, explaining the purpose of the two different precedence
values.

Rank(token As String) As Integer

Returns the rank of an operator. This value indicates how the associated operator affects
the number of items on the evaluation stack. Binary operators decrease the number of
stack items by one. Unary operators leave the number of items unchanged. Variable
push and Constant push operations increase the number of items by one.

– ! –14

Result As Double

Returns the result of the last evaluation of the expression. This always returns the result
of the last evaluation of the expression regardless of whether some other code has
changed the value of the destination variable, because this method retrieves the value
from the expression's evaluation stack which is not accessible to other code. See also the
OutputValue method.

TokenToSymbol(token As String) As String

Returns the symbol (operator, variable or constant) that corresponds to the token string.

Validate(tkExpr() As String) As Boolean (New, as of v1.1.0b)
Checks the tokenized infix expression tkExpr to determine if it is well formed. Returns
True if valid and False otherwise. This is called by Parse.

X_Methods

These are the methods whose names begin with X_ and which are invoked to perform
the individual arithmetic operations on the evaluation stack when the expression is
being evaluated. They have no call and no return parameters. They directly access and
modify evalStack , stkPtr, and the varValues array. They also read cmdPtr, the param
array and the constants array but do not change them.

– ! –15

The following chart shows a complete list of the current X_methods:

* Note that while the left and right parentheses are included in the table, they have no associated X-
methods, because these symbols disappear during the parsing process. The left parenthesis precedence
value is automatically determined according to the other operator precedence values, to ensure that it
always has the highest precedence. And so, its value may change from what is shown here if higher
precedence operators are added to the list.

Operation Symbol Method Prec. Assoc. Rank
Add + X_Add 4 0 -1
Subtract/Unary Minus - X_Sub 4 0 -1
Multiply * X_Mul 5 0 -1
Divide / X_Div 5 0 -1
Raise to Power ^ X_Pwr 6 1 -1
Unary Minus ~ X_Neg 8 1 0
Integer Divide \ X_Idv 5 0 -1
mod (remainder) mod X_Mod 5 0 -1
Abs abs(X_Abs 7 1 0
Ceiling ceil(X_Ceil 7 1 0
Floor floor(X_Floor 7 1 0
If if(X_If 7 1 -2
Integer int(X_Int 7 1 0
Max max(X_Max 7 1 -1
Min min(X_Min 7 1 -1
Square Root sqrt(X_Sqt 7 1 0
Exponential exp(X_Exp 7 1 0
Logarithm (Natural) log(X_Log 7 1 0
Sine sin(X_Sin 7 1 0
Cosine cos(X_Cos 7 1 0
Tangent tan(X_Tan 7 1 0
Arcsine asin(X_Asin 7 1 0
Arccosine acos(X_Acos 7 1 0
Arctangent atan(X_Atn 7 1 0
Arctangent-2 (2 argument version) atan2(X_Atn2 7 1 -1
Complete Elliptic Integral 1st kind K ElipK(X_ElipK 7 1 0
Complete Elliptic Integral 2nd kind E ElipE(X_ElipE 7 1 0
Complete Elliptic Integral K–E ElipKE(X_ElipKE 7 1 0
Equals Comparison == X_EQU 3 0 -1
Not Equals Comparison <> X_NEQ 3 0 -1
Less Than or Equals Comparison <= X_LEQ 3 0 -1
Greater Than or Equals Comparison >= X_GEQ 3 0 -1
Greater Than Comparison > X_GRT 3 0 -1
Less Than Comparison < X_LES 3 0 -1
Boolean And AND X_AND 2 0 -1
Boolean Or OR X_IOR 1 0 -1
Boolean Not NOT X_NOT 8 1 0
Boolean Exclusive Or XOR X_XOR 2 0 -1
Push Constant Pi pi X_Pi 9 0 1
Push Variable $ X_Var 9 0 1
Push Constant # X_Con 9 0 1
Assignment* = X_STO 0 0 0
Comma Delimiter* , X_DLM 1 0 0
Left Parenthesis* (10 20 0
Right Parenthesis*) 0 0 0

– ! –16

In addition, while the assignment operator and comma delimiter are associated with the X_STO and
X_DLM methods, these methods are never invoked. Storing the evaluation result is handled directly by
the Eval method, and commas are removed during the parsing process.

There is an explicit unary minus operator shown in the table. The user isn't required to
use this, and it may or may not be included in the list of valid characters kValidChars,
because the regular minus sign is interpreted according to the expression context to
determine whether it's being used as a unary or binary operator. The Parse function
internally converts the minus sign to the the unary minus symbol ~ (tilde) when it
determines that it is being used as unary operator. This simplifies later processing.
However, if it is intended to display the infixTxt string to the user, then it may be wise
to first replace all occurrences of ~ with –.

These methods all have attributes assigned as shown in the table: Symbol As String,
Precedence As Integer, Associativity As Integer, Rank As Integer.

The ExpressionEvaluator class has been set up in such a way that it may be easily
extended to include additional mathematical operations merely by adding new
X_Methods, with their included attributes. No other changes are required in the class.
The Init method locates the X_methods and extracts all necessary information to
implement them.

6.2 Shared Methods

ClearVariables

Deletes all variables from the symbol table, except for $result (and $result is set to 0.0).
If existing ExpressionEvaluator instances are to be evaluated again, then they must be
re-parsed, to regenerate their variables.

ExistsVariable(s As String) As Boolean

Returns True if variable s exists in the parsed expression, False otherwise.

Filter(s As String, filterChars As String, mode As Boolean) As String

If mode is True, the returned string will be equal to input string s excluding the
characters that are not in filterChars. If mode is False, the returned string will be equal
to input string s excluding the characters that are in filterChars.
This method uses Regex, and therefore filterChars should not include any Regex meta-
characters unless they are escaped with a backslash. Otherwise, results will be
unpredictable.

GetVariable(varName As String) As double

Returns the value of the variable which has the name varName.

– ! –17

GroupVariables(expArray() As ExpressionEvaluator, gvList() As Integer)

Returns in gvList a set of variable indices currently in use by the group of
ExpressionEvaluators in expArray.

SetVariable(varName As String, varValue As double)

The value of the variable having the name varName is set to varValue. If the variable
doesn't exist, it is created, and the value is then set to varValue.

ValidVarName(varName As String) As Boolean

Checks the syntax of the varName string argument to determine if it is a properly
formed variable name. If it is valid the method returns True. Otherwise it returns False.

6.3 Properties

cmdList() Array of Introspection.MethodInfo

This is the list of pointers to the operator methods, arranged in proper execution order,
which is used by the Eval method to evaluate the expression. The cmdList data is
created by the Parse method.

cmdListSize Integer

This is the Ubound of the cmdList array. Its value is set by the Parse method.

cmdPtr As Integer

Used as an index into the cmdList array when the expression is being evaluated. It
indicates the current command being executed in the command sequence.

constants() Array of Double

The values of the constants that originally appear as text in the expression parsed by the
Parse method.

destVarIndex As Integer

Index of the expression's destination variable in the varNames and varValues arrays.
The destination variable is the variable that appears to the left of the assignment
operator in the expression.

errLog As String

This holds all of the diagnostic and status messages generated by the Parse, Init and
Eval methods.

– ! –18

evalStack() Array of Double

This is the operations stack used for the evaluation of the expression.

infixTxt As String

This is a copy of the string expression argument passed to the Parse method for parsing.
After Parse fully tokenizes the expression. infixTxt is updated with a reformatted
version of the expression which has uniform capitalization and spacing. infixTxt is
never used by any of the class methods. It is for use by the developer for display
purposes.

isParsed As Boolean

If the expression has been successfully parsed, this it set to True. Otherwise, it is False.
This is checked by Eval before it attempts to evaluate the expression.

param() Array of Integer

This is a companion to the cmdList array. It contains the index of the parameter to be
used by the operator that is referenced in the cmdList array. Most operators require no
parameters. For them the value in the Param array is zero. For the X_Con, and X_Var
operators, the Param array holds the index to the corresponding constant or variable in
the respective constants and varValues arrays.

postfixTxt As String

This is a postfix version of the infix expression parsed by the Parse method. Each
symbol in the postfixTxt string corresponds to an operation in the cmdList array.
postfixTxt is never used by any of the class methods. It is for use by the developer, if
there is a need to convert infix to postfix, or for display purposes.

stkPtr As Integer

Index to the current top of the evalStack. Used by the Eval method and all of the
X_methods for writing to and reading from the evaluation stack when the expression is
being evaluated.

varList() Array of Integer

Array of indices to the varNames and varValues arrays for all of the input variables
used by the expression. The destination (output) variable is not included in the array
unless it is also used as an input. The destination index is in destVarIndex.

6.4 Shared Properties

constantIndex As Integer

The index into the prsXXX arrays for the Constant Push X_Con method data.

– ! –19

prsAssociativity() Array of Integer

Left/Right associativity data for the corresponding operators. A value of 0 means the
operator is left associative. A value of 1 means the operator is right associative.

prsOpMethod() Array of Introspection.MethodInfo

Array of MethodInfo for the X_method operator methods.

prsPrecedence() Array of Integer

Array of precedence values for the operators.

prsPrefixOp() Array of Boolean

Array of values identifying which operators are prefix type functions, such as sin, cos,
exp, log, etc.

prsRank() Array of Integer

Array of rank values for the operators. The rank indicates how operator affects the
number of items on the stack. A value of -1 indicates that the operator reduces the
number of items by one (typical of binary operators). A value of 0 indicates that the
operator leaves the number of items unchanged (typical of unary operators). A value of
+1 indicates that the operator increases the number of items by one (typical of Constant
and Variable Push operations).

prsSymbol() Array of String

Array of symbol strings for the corresponding operators.

tknLeftPar As String

The token used for the Left Parenthesis

tknMinus As String

The token used for the Subtraction operator

tknPlus As String

The token used for the Addition operator

tknPOPmInfo As Introspection.MethodInfo

The token used for the Stack Pop operator

tknRightPar As String

The token used for the Right Parenthesis

– ! –20

tknSTOmInfo As Introspection.MethodInfo

The token used for the Stack Store operator

tknUnaryMinus As String

The token used for the Unary Minus operator

varIndex As Integer

The index into the prsXXX arrays for the Variable Push X_Var method data.

varNames() Array of String

Array of all of the variable names that have been created by the Parse and SetVariable
methods.

varValues() Array of Double

Array of the variable values corresponding with the variable names in varNames.

– ! –21

7 Miscellaneous Notes

Since this is open source, and may be freely modified, I've only included what I
consider the most basic features, at least for the time being.

For the current release, there is direct access to several properties, rather than protecting
them and using get and set methods. I may change this in the future. In the meantime,
use with caution.

7.1 Syntax Peculiarities

The syntax rules for the ExpressionEvaluator class are slightly different from Xojo's
math expression syntax. One reason for this is that I am obviously not privy to how
Xojo implemented their own expression evaluator, and so I cannot guarantee this one to
be the same. Another reason for this is to avoid the ordeal of disambiguation of certain
operators. For that reason I chose to use == as the equals comparison operator (à la
Java) to distinguish it from the = assignment operator. (In an earlier version of this class,
I used := for assignment and = for comparison. To understand the difficulties that
ambiguous operators create, have a look at all of the code in the Parse method that's
used just to distinguish whether the minus sign is intended to be a subtraction operator,
a unary minus operator, a leading character of a numerical constant, or an embedded
exponent sign in a numerical constant formatted as scientific notation.

Unlike Xojo expressions, ExpressionEvaluator variable names are allowed to begin
with the underscore character.

The fact that there are slight differences between ExpressionEvaluator syntax and Xojo
syntax, should not matter as far as the end user is concerned, since the end user
shouldn't be expected to know the internal details of how Xojo works.

7.2 Variable Handling

One may ask why variables were implemented with arrays rather than as a dictionary
using the variable name as the key. The reason is that the use of arrays is faster and
simpler when the expression is evaluated (especially when evaluated many thousands
of times), and execution speed was considered most important.

7.3 The Double Data Type

The only data type used by the ExpressionEvaluator class when evaluating expressions,
is type Double. Since there are boolean comparison operators included in the class,
some explanation of their operation is in order. Where a Boolean value is expected as an

– ! –22

argument to a Boolean operator, any non-zero Double value is interpreted as True, and
zero values are interpreted as False. The result of any operation (Boolean or
Comparison) that returns a Boolean value, will return 1.0 for True, and 0.0 for False.
This is similar to the operation of older versions of the BASIC language which work
only in floating point.

Currently in development are versions of the ExpressionEvaluator class which use
Robert Delaney's BigFloat and BigComplex data types.
http://delaneyrm.com/fpPlugin.html
These are working but have not been tested exhaustively. If you are interested in using
them, please contact me at the email address below.

7.4 The LogEntry Diagnostics

The LogEntry method serves two purposes.
Firstly, it assembles diagnostic information for the end user to help diagnose syntax
errors in the input expression, and other related user errors.
Secondly, it provides debugging information to the developer as the class is further
developed, or obscure bugs are discovered. For that reason, if you look through the
source code you will see quite a few LogEntry function calls that have been commented
out. I chose not to delete these from the code, because they become useful again when
things go awry. Of course, you can add, modify or delete LogEntry calls to suit your
own particular application. In some future release, I intend to add the ability to
programatically set how verbose the LogEntry is.

7.5 User Feedback

If you have any comments, questions or bug reports regarding either the software or the
documentation, I would appreciate receiving it. You can contact me directly by email:
!

– ! –23

http://delaneyrm.com/fpPlugin.html

Revision History

2017-01-04 - Version 1.0.0 Beta

First release.

2017-01-07 - Version 1.0.1 Beta

Bug fix Resolved difference between 2016r3 and 2016r4.1 in how they handle Auto data
type. This caused application to crash when compiled in 2016r4.1. This is a
verified bug in 2014v4.1 (Feedback Case #46553)

2017-01-26 - Version 1.1.0 Beta

Change Parentheses are now required around the arguments of functions. This change
was instigated, partly by the bugs mentioned below, and partly to make it easier
to deal with functions having more than one argument (and of course for better
consistency with other software). In handling functions, a new boolean attribute,
Prefix, has been added to the X_methods. It is set to True for function type
operators, and False for all others. This attribute is loaded into a new boolean
array shared property prsPrefixOp by the Init method.

Change Functions having more than one argument are now supported. As a result, new
functions Max, Min and Atan2 have been added. Currently, the number of
arguments is fixed by the Rank attribute. Consequently, a variable number of
arguments is not yet supported, so Max and Min must take exactly two
arguments.

Change Some minor changes have been made to the user interface in the example project.
The Evaluate and Solve buttons are now disabled until an expression is
successfully parsed. This prevents a user from inadvertently trying to evaluate an
expression that hasn't yet been parsed. Also, there are some changes in the
Variables Listbox behaviour when tabbing from cell to cell, or clicking on cells.

Bug fix If an expression had no explicit destination variable assigned, and the first
symbol was a function such as sin, cos, etc., then parse would give an error even
though the expression was valid.

Bug fix Incorrect precedence values caused unary minus to be parsed out of order when
immediately followed by a prefix function (e.g., sin, abs, etc.).

Bug fix In certain cases, invalid infix expressions could go undetected and would be
parsed into an executable command list. It had previously been assumed that
any syntax errors that weren't caught by the scanner and tokenization process
would be caught in the postfix conversion. Apparently, this was a naïve
assumption. So, a new Validate method has been added which checks that the
final tokenized infix expression is well formed prior to the postfix conversion.

2017-02-07 - Version 1.2.0 Beta

Change Added three elliptic integral functions K, E and K–E.

Bug fix Functions that push a constant on the stack (e.g., pi) had caused the Validate
function to return False.

– ! –24

2017-02-14 - Version 1.2.1 Beta

Change Temporary operands within the X_Methods have been removed and replaced by
a shared property. This eliminates the allocation and deallocation of the variables
whenever the X_Method is executed, which should make it slightly faster. This
also makes it simpler for future upgrades to larger floating point numbers (such
as 128 bit floating point) once Xojo is able to handle them.

2018-09-12 - Version 1.3.0 Beta

New Feature Added functions Ceil(), Floor() Int() and If().

New Feature Added new shared method ExistsVariable().

Bug Fix Resolved issue where a unary minus would be interpreted as a subtract operator,
and flagged as an error, if it occurred at the beginning of an expression which
didn't have an assignment variable.

2018-09-15 - Version 1.3.1 Beta

Compatibility Issue Added a workaround to handle a XOJO 2018r2 bug which corrupts the attribute
values of the X_methods. ExpressionEvaluator class appears now to work with
XOJO 2018r2.

– ! –25

